Pytition
Release 2.0

Yann Sionneau

Jan 27, 2023

CONTENTS:

1 Installation
1.1 Manual installation (recommended for production) e
1.2 Installation via Docker (recommended for development)
2 Multi-domain installation example
2.1 Objectif o e e e e e e
2.2 Creating user accounts and dir€ctorieso e e
2.3 Install system dependencieso e e e
2.4 Get the source, configure and initialize Pytition
2.5 Apache and uwsgi configuration L L e e e e e e e e
2.6 Regular maintenance (update) L L. L e
3 Configuration
3.1 Mandatory Settingso a e e e e e e e e e e e e e e e e e e
3.2 Not mandatory but important Settings ot e e e e e e e e e
3.3 Otheroptional SEttings o i e e e e e e e e e e e e e e e e e
4 Update
4.1 Backupyourfiles
4.2 Backupyour Database e
4.3 Update to anewer Pytition Version it
5 Indices and tables
Python Module Index
Index

~N W

15
15
18
19

21
21
21
22

23

25

27

Pytition, Release 2.0

Pytition is an application for privacy-friendly online petitions you can host on your own server. Pytition uses the
renown Django framework and is easy to install.

Demo: https://pytitiondemo.sionneau.net/

CONTENTS: 1

https://pytitiondemo.sionneau.net/

Pytition, Release 2.0

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

1.1 Manual installation (recommended for production)

Install system dependencies:

1.1.1 On Debian derivatives

$ sudo apt update
$ sudo apt install git virtualenv python3-dev build-essential mariadb-server gettext
—libzip-dev libssl-dev

On Ubuntu 18.04 LTS you need to install libmariadbclient-dev:

’$ sudo apt install libmariadbclient-dev

On Ubuntu 20.04 LTS and later you need to install libmariadb-dev-compat:

’$ sudo apt install libmariadb-dev-compat

1.1.2 On Centos/Fedora derivatives

$ sudo yum install MariaDB-server galera-4 MariaDB-client MariaDB-shared MariaDB-
—backup MariaDB-common git python3 python3-virtualenv make gcc gettext

1.1.3 On Arch Linux

$ sudo pacman -S mariadb mariadb-1libs python make gcc gettext

Pytition, Release 2.0

1.1.4 Get the source, configure and initialize Pytition

Get the latest release git tag:

$ version=$§(curl -s https://api.github.com/repos/pytition/pytition/releases/latest |
—grep "tag_name" | cut -d : -f2,3 | tr -d \" | tr -d ,)

Create a directory to host your Pytition instance and it’s static files:

’$ mkdir -p www/static www/mediaroot

Create a Python3 virtualenv to install Pytition’s dependencies:

’$ virtualenv -p python3 pytition_venv

Clone Pytition git repository and checkout latest release:

$ cd www

$ git clone https://github.com/pytition/pytition
$ cd pytition

$ git checkout Sversion

Enter your virtualenv and install Pytition’s dependencies:

$ source ../../pytition_venv/bin/activate
(pytition_venv) $ pip3 install -r requirements.txt

Create a MySQL database and user for Pytition:

$ password="ENTER_A_SECURE_PASSWORD_YOU_WILL_REMEMBER_HERE"

$ sudo mysgl -h localhost -u root -Bse "CREATE USER pytition@localhost IDENTIFIED BY '
sword}'; CREATE DATABASE pytition; GRANT USAGE ON x.x TO 'pytition'@localhost;
—GRANT ALL privileges ON pytition.x TO pytition@localhost; FLUSH PRIVILEGES;"

- S{pa

Write your SQL credential file in my.cnf outside of www:

[client]

database = pytition

user = pytition

password = YOUR_PASSWORD_HERE
default-character-set = utfs8

If your SQL server is MariaDB <= 10.2.1, you need to setup your SQL server to use table format compatible with
larger-than-767-bytes columns. From 10.2.2 onward, row format is already DYNAMIC by default. So, if you have
an old MariaDB, add the following lines after [server] in /etc/mysql/mariadb.conf.d/50-server.cnf (This path is for
Ubuntu 18.04):

innodb_large_prefix=true
innodb_file_format=barracuda
innodb_file_per_table=true
innodb_default_row_format=DYNAMIC

Create your Pytition instance config file by copying the example one:

$ cd www/pytition
$ cp pytition/pytition/settings/config_ example.py pytition/pytition/settings/config.py

4 Chapter 1. Installation

Pytition, Release 2.0

Now you can edit your config file in pytition/pytition/settings/config.py according to Configuration.

You must at least configure the settings described in the Mandatory settings section of the Configuration page.

Those are:

SECRET_KEY
STATIC_URL
STATIC_ROOT
MEDIA_URL
MEDIA_ROOT
DATABASES

ALLOWED_HOSTS

Warning: If you do not use the config_example.py sample file as a base for your config, do NOT forget to
also set TINYMCE_JS_URL. Most likely you will just need to set it to STATIC_URL + TINYMCE_JS_PATH

Note: Do not forget to put a correct path to your my.cnf MySQL credential file in your config DATABASES setting.

Initialize Pytition project database. Pay attention to be in your virtualenv to enter the following commands:

$
$
$
$
$
$

cd www/pytition/pytition
export DJANGO_SETTINGS_MODULE="pytition.settings.config"

python3 manage
python3 manage
python3 manage
python3 manage

-PY
-PY
-PYy
-PY

migrate
collectstatic
compilemessages
createsuperuser

Note: You will be asked to enter a username, email and password for the administrator’s account.

Before trying to configure a web server you can try to see if your configuration is OK by running:

$ DEBUG=1 DJANGO_SETTINGS_MODULE=pytition.settings.config python3 ./manage.py,,
—runserver 0.0.0.0:8000

You can then point your browser to http://yourdomain.tld:8000 and check that you can see Pytition’s home page and
log-in with your newly created admin account.

Warning: If you've set USE_MAIL_QUEUE to True and MAIL_EXTERNAL_CRON_SET to False, running
Pytition via manage.py runserver might not work well since you need to be run via uwsgi. Especially
emails might not be sent.

Note: If you switch USE_MAIL_QUEUE from False to True at some point, you might have to re-run python3
manage.py migrate to create the database structures needed for the mail queues.

1.1. Manual installation (recommended for production) 5

Pytition, Release 2.0

1.1.5 Configure your web server

Nginx + uwsgi (recommended)

First install Nginx web server:

$ sudo apt install nginx

Here is an example of Nginx configuration that you can put in /etc/nginx/sites-available/pytition:

server {
server_name pytition.mydomain.tld;
keepalive_timeout 70;

location / {

include uwsgi_params;

uwsgi_pass unix:/var/run/uwsgi/app/pytition/socket;
}
location /static {

alias /home/pytition/www/static;

location /mediaroot {
alias /home/pytition/www/mediaroot;

listen 443 ssl; # managed by Certbot

ssl_certificate /etc/letsencrypt/live/pytition.mydomain.tld/fullchain.pem; #_
—managed by Certbot

ssl_certificate_key /etc/letsencrypt/live/pytition.mydomain.tld/privkey.pem; #_,
—managed by Certbot

include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot

ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot

server {
server_name pytition.mydomain.tld;
listen 80;
return 301 https://pytition.mydomain.tldSrequest_uri;

The previous example automatically redirects HTTP/80 to HTTPS/443 and uses Let’s Encrypt generated certificate.

Enable your new Nginx config:

$ sudo 1n -s /etc/nginx/sites-available/pytition /etc/nginx/sites-enabled/pytition
$ sudo systemctl reload nginx

Install uwsgi dependency:

’sudo apt install uwsgi uwsgi-plugin-python3 python3-uwsgidecorators

Put the UNIX user of your install in www-data group (for Debian like systems) if your user wasn’t www-data already.
For instance in our case we use the pytition unix username:

’sudo usermod —-a -G pytition www-data

Give both uwsgi and nginx access to your mediaroot directory:

6 Chapter 1. Installation

Pytition, Release 2.0

sudo chown -R pytition:www-data /home/pytition/www/mediaroot

Now let’s create our uwsgi configuration in /etc/uwsgi/apps-available/pytition.ini:

[uwsgi]

chdir = /home/pytition/www/pytition/pytition
module = pytition.wsgi

home = /home/pytition/pytition_venv

master = true

processes = 10

vacuum = true

socket = /run/uwsgi/app/pytition/socket

uid = ENTER_HERE_PYTITION_UNIX_USER

gid = www-data

chmod-socket = 664

plugins = python3

env = DJANGO_SETTINGS_MODULE=pytition.settings.config

Create a symlink to enable or uwsgi configuration:

sudo 1ln -s /etc/uwsgi/apps—available/pytition.ini /etc/uwsgi/apps-enabled/pytition.ini

Start uwsgi and nginx servers:

$ sudo systemctl start uwsgi
$ sudo systemctl start nginx

Your Pytition home page should be available over there: http://mydomain.tld

Now it’s time to Configure your Pytition instance the way you want!

1.2 Installation via Docker (recommended for development)

don’t.

Warning: Please, do NOT use this in production. You would have tons of security and performance issues.
You could lose your SECRET_KEY, you would run with Django’s DEBUG setting enabled, you would be serving
static files via Django basic webserver. You would be running with no HTTPS possibility at all. etc etc. Please :

Clone latest development version of Pytition:

’$ git clone https://github.com/pytition/pytition

Install docker and docker-compose:

’$ sudo apt install docker.io docker—-compose

Put your user in the docker group (needed for Ubuntu 18.04) and start docker daemon:

sudo usermod —a -G docker SUSER

log—in again as your user for group change to take effect
or just type the following line

su -1 SUSER

sudo systemctl enable docker

sudo systemctl start docker

wr W r

1.2. Installation via Docker (recommended for development)

http://mydomain.tld

Pytition, Release 2.0

For the first run you need to create the database container and let it be ready:

’$ docker—-compose up —--build db

Wait until it prints something like:

’LOG: database system is ready to accept connections

Then hit ~C (ctrl+C) to shutdown the database container.

From now on, you can just type this to run Pytition in a container:

’$ docker—-compose up —--build

Last command before being able to click on the “http://0.0.0.0:8000/” link that the “web” container prints to out on
the console. You need to run migrations, install static files, compile language files, create an admin account and lastly
populate your database with some dummy data. You can do all of this with the dev/initialize.sh script:

’$ docker—compose exec web ./dev/initialize.sh

Aaaand that’s it! You can now just click on the links:
¢ http://0.0.0.0:8000/ for the Pytition interface
* http://0.0.0.0:8080/ for the mail server web interface

Next time, justrun $ docker-compose up --build

8 Chapter 1. Installation

http://0.0.0.0:8000/
http://0.0.0.0:8000/
http://0.0.0.0:8080/

CHAPTER
TWO

MULTI-DOMAIN INSTALLATION EXAMPLE

2.1 Objectif

Mutualize Pytition’s code so that database and mediaroot directory stay separate for each organization. In practice,
on a single hosting server, you will have for instance 2 organizations that will each have their own Pytition instance:
pytition.orgal.org and pytition.orga2.org and each web site will share Pytition’s source code but will have its own
independant database and mediaroot directory. Because the source code will be shared, it will be easier to keep all the
web sites up-to-date, using a dedicated administration account.

2.2 Creating user accounts and directories

$ sudo useradd -m -s /bin/bash pytition-admin
$ sudo useradd -m -s /bin/bash orgal-user
$ sudo useradd -m -s /bin/bash orga2-user

pytition-admin will be the user account dedicated to Pytition’s code maintenance.

$ sudo mkdir -p /etc/pytition/{orgal,orga2,admin}
$ sudo touch /etc/pytition/{orgal,orga2,admin}/__init__ .py
$ sudo touch /etc/pytition/_ _init_ .py

/etc/pytition will contain database config and credentials as well as Pytition’s config file for each site.

$ sudo mkdir -p /srv/pytition/www/mediaroot/{admin,orgal,orga2}
$ sudo mkdir -p /srv/pytition/www/static

2.3 Install system dependencies

$ sudo apt update
$ sudo apt install git virtualenv python3-dev build-essential default-libmysglclient-
—dev gettext libzip-dev libssl-dev apache2 uwsgi

Pytition, Release 2.0

2.4 Get the source, configure and initialize Pytition

Get the latest release git tag:

$ version=$(curl -s https://api.github.com/repos/pytition/pytition/releases/latest |
—grep "tag_name" | cut -d : -f2,3 | tr -d \" | tr -d ,)

Create a Python3 virtualenv to install Pytitiont’s dependencies:

$ cd /srv/pytition/
$ sudo virtualenv -p python3 pytition_venv

Clone Pytition git repository and checkout latest release:

$ cd www

$ sudo git clone https://github.com/pytition/pytition
$ cd pytition

$ sudo git checkout Sversion

Set correct ownership and group to directories:

sudo chown -R pytition-admin:www-data /srv/pytition

sudo chown orgal-user:www-data /srv/pytition/www/mediaroot/orgal
sudo chown orga2-user:www-data /srv/pytition/www/mediaroot/orga2
sudo chmod g+s /srv/pytition/www/static/

v »r A

Enter your virtualenv and install Pytition’s dependencies:

$ sudo su pytition-admin
$ source /srv/pytition/pytition_venv/bin/activate
(pytition_venv) $ pip3 install -r /srv/pytition/www/pytition/requirements.txt

Create db-pytition-orga, db-pytition-orga2, db-pytition-admin as well as associated SQL users db-user-orgal, db-user-
orga2 and db-user-admin on your MariaDB SQL server.

You need to write a /etc/pytition/{orgal,orga2,admin }/my.cnf file for each organization.

[client]

host = your-data-base-server

database = db-pytition-orgal

user = db-user-orgal

password = YOUR_PASSWORD_HERE
default-character-set = utf8

For the administration account, you can use an sqlite3 database instead of creating a new database on MariaDB.

Create the /etc/pytition/{orgal,orga2,admin}/config.py file for each organization. You can start by copying the config-
uration example file /src/pytition/www/config_example.py

The my.cnf and config.py files must have the correct permissions.

E.g. for orgal:

$ sudo chown orgal:pytition-admin /etc/pytition/orgal/{my.cnf,config.py}
$ sudo chmod u=rw,g=r,o=--- /etc/pytition/orgal/{my.cnf,config.py}

Now you can edit your config file in pytition/pytition/settings/config.py according to Configuration.

You must at least configure the settings described in the Mandatory settings section of the Configuration page.

10 Chapter 2. Multi-domain installation example

Pytition, Release 2.0

Those are:

* SECRET_KEY

» STATIC_URL

e STATIC_ROOT

« MEDIA_URL

* MEDIA_ROOT

* DATABASES

* ALLOWED_HOSTS

Warning: If you do not use the config_example.py sample file as a base for your config, do NOT forget to
also set TINYMCE_JS_URL. Most likely you will just need to set it to STATIC_URL + TINYMCE_JS_PATH

Warning: Pay attention to the following config values:

STATIC_ROOT = "/srv/pytition/www/static"
MEDIA_ROOT = "/srv/pytition/www/mediaroot/orgal (pour le config.py de 1l'orgal)

The DATABASE config value should point to /etc/pytition/orgal/my.cnf

Note: Do not forget to put a correct path to the my.cnf MySQL credential file in your each config DATABASES
setting.

Initialize Pytition as well as its databases. You must be in the virtualenv while entering the following commands:

$ export PYTHONPATH="/etc/pytition"
$ cd /srv/pytition/www/pytition/pytition

$ sudo -u pytition-admin -- DJANGO_SETTINGS_MODULE="admin.config" python3 manage.py,
—migrate

$ sudo -u pytition-admin -- DJANGO_SETTINGS_ MODULE="admin.config" python3 manage.py,,
—collectstatic

$ sudo -u pytition-admin -- DJANGO_SETTINGS_MODULE="admin.config" python3 manage.py,,
—compilemessages

$ sudo -u pytition-admin -- DJANGO_SETTINGS_MODULE="admin.config" python3 manage.py,
—Ccreatesuperuser

$ sudo -u orgal-user -- DJANGO_SETTINGS_ MODULE="orgal.config" python3 manage.py,,
—migrate

$ sudo -u orga2-user -- DJANGO_SETTINGS_MODULE="orga2.config" python3 manage.py,,

—migrate

Note: You will be asked to enter a username, email and password for the administrator’s

Before trying to configure a web server you can try to see if your configuration is OK by running: E.g. for orgal:

$ DEBUG=1 DJAlL

SETTINGS_MODULE=orgal.config python3 ./manage.py runserver

You can then point your browser to http.//yourdomain.tld:8000 and check that you can see Pytitiont’s home page and
log-in with your newly created admin account.

2.4. Get the source, configure and initialize Pytition 11

Pytition, Release 2.0

Warning: If you’ve set USE_MATIL_QUEUE to True and MAIL_EXTERNAL_CRON_SET to False, running
Pytition via manage.py runserver might not work well since you need to be run via uwsgi. Especially
emails might not be sent.

Note: If you switch USE_MAIL_QUEUE from False to True at some point, you might have to re-run python3
manage.py migrate to create the database structures needed for the mail queues.

2.5 Apache and uwsgi configuration

Install uwsgi dependency:

’$ sudo apt install uwsgi uwsgi-plugin-python3 python3-uwsgidecorators

and enable proxy_uwsgi on apache:

’$ sudo aZenmod proxy_uwsgi

Here is an example of Apache configuration that you can put in /etc/apache2/sites-available/orgal:

<VirtualHost =*:80>
ServerName pytition.orgal.org

Alias /static /srv/pytition/www/static

Proxypass /static !

Alias /mediaroot /srv/pytition/www/mediaroot/orgal/
Proxypass /mediaroot !

ProxyPass / unix:/var/run/uwsgi/app/pytition.orgal.org/socket |uwsgi://localhost/
<Directory /srv/pytition/www/static>

Require all granted

</Directory>

<Directory /srv/pytition/www/mediaroot>

Require all granted

</Directory>

CustomLog /var/log/apache2/access.log combined
CustomLog /var/log/apache2/pytition.orgal.org.log combined

</VirtualHost>

Here is an example of uwsgi configuration that you can put in /etc/uwsgi/app-available/. Don’t forget to create a
symbolic link in /etc/uwsgi/app-enabled pointing to the previously created file.

[uwsgi]

chdir = /srv/pytition/www/pytition/pytition
module = pytition.wsgi

home = /srv/pytition/pytition_venv

master = true

(continues on next page)

12 Chapter 2. Multi-domain installation example

Pytition, Release 2.0

(continued from previous page)

enable-threads = true

processes = 5

vacuum = true

socket = /var/run/uwsgi/app/pytition.orgal.org/socket
uid = orgal-user

gid = www-data

chmod-socket = 664

pythonpath = /etc/pytition/

plugins = python3

env = DJANGO_SETTINGS_MODULE=orgal.config
stats = 127.0.0.1:9191

need-app = true

max-requests = 5000
max-worker-lifetime = 3600
reload-on-rss = 2048

worker-reload-mercy 60
harakiri = 120
py—-callos—afterfork = true
auto-procname = true

procname-prefix = orgal->

Start uwsgi and nginx servers:

$ sudo systemctl start uwsgi
$ sudo systemctl start apache?2

Your Pytition home page should be available over there: http://pytition.orgal.org

Now it’s time to Configure your Pytition instance the way you want!

2.6 Regular maintenance (update)

In order to update all your Pytition sites, here is a bach script (run by pytition-admin user) which can be used in a cron
task:

#!/bin/bash

set -e

DJANGO_MANAGE="/srv/pytition/www/pytition/pytition/manage.py"

source /srv/pytition/pytition_venv/bin/activate

export PYTHONPATH="/etc/pytition/"

echo

echo "###H#HHHFFHFHFFHFHFFHHFHRHHHE"

echo "Updating admin Pytition"

echo "####H#HHHHFEHFHFERFHFERFHSE"

echo

DJANGO_SETTINGS_MODULE="admin.config" python3 S$DJANGO_MANAGE maintenance_mode on
DJANGO_SETTINGS_MODULE="admin.config" python3 S$DJANGO_MANAGE update
DJANGO_SETTINGS_ MODULE="admin.config" python3 S$DJANGO_MANAGE maintenance_mode off
for site in $(ls /etc/pytition|grep -vE "“admin$|”__init__ \.py$")

do

echo

echo "#######HHHHHHHHFEHHHHEHERHEHERAHHERHHSERHHAEREHAE"

echo "Updating $site Pytition"

echo "###H#HH#HHHHFHFHHFHHHHHEHAFFEHARHHHARHHHFRAHHERAHHET

echo

(continues on next page)

2.6. Regular maintenance (update) 13

http://pytition.orga1.org

Pytition, Release 2.0

(continued from previous page)

5E maintenance_mode on
SE migrate

site.config" python3

DJANGO_SETTINGS_MODULE="$
DJ SETTINC)

JULE="S$site.config" python3

DJANGO_SETTINGS_MODULE="S$site.config" python3 sO_MANAGE maintenance_mode off
done
deactivate

14 Chapter 2. Multi-domain installation example

CHAPTER
THREE

CONFIGURATION

A configuration example is provided in pytition/settings/config_example.py. You should copy and edit it to configure
Pytition.

3.1 Mandatory settings

You must set the following variables:

ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '[::1]']

Enter the hostname(s) (aka VirtualHost(s)) Django should accept.
For instance mydomain.tld or petition.mydomain.tld

See also:
Details on how to set this up are available in Django documentation: ALLOWED_HOSTS

Example:

ALLOWED_HOSTS = ['www.mysuperpetition.org', 'mysuperpetition.org']

DATABASES = {}

Enter a database setting.

This will tell Django what database engine you want to use (supported ones are listed there:
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASE-ENGINE)

It will also give parameters like user/password credentials, server host/port etc.
See also:

Details on how to set this up are available in Django documentation: https://docs.djangoproject.com/en/2.2/ref/
settings/#std:setting-DATABASES

In the following example, credentials are in my.cnf file:

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysqgl',
"OPTIONS': {
'read_default_file': '/home/pytition/my.cnf’,
'init_command': "SET sqgl_mode='STRICT_TRANS_TABLES'",
}I

(continues on next page)

15

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-ALLOWED_HOSTS
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASE-ENGINE
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASES
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASES

Pytition, Release 2.0

(continued from previous page)

MEDIA_ROOT = ''

Enter the file system path to the directory that will be used to serve user uploaded files.
This must be an initially empty directory.

You must also configure a web server (apache, nginx or other) to serve

the content of this directory according to your MEDIA_URL setting

which defaultis ' /mediaroot/ " in the example config.

For instance you can have this kind of setting:

MEDIA_ROOT = '/home/pytition/www/mediaroot'
MEDIA_URL = '/mediaroot/'

And then in your apache config:

Alias /mediaroot /home/pytition/www/mediaroot

Or in your nginx config:

location /mediaroot {
alias /home/pytition/www/mediaroot;

See also:

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA_ROOT for more details from Django
Documentation

MEDIA URL = '/mediaroot/'

enter the prefix that will be used for the url to refer to uploaded files.

it must end with a forward slash ‘/°.

you must also configure a web server (apache, nginx or other) to serve

the content of the directory configured as MEDIA_ROQOT according to this setting
it defaults to ' /mediaroot /' in the example config.

for instance you can have this kind of setting:

MEDIA _ROOT = '/home/pytition/www/mediaroot'
MEDIA_URL = '/mediaroot/'

and then in your apache config:

alias /mediaroot /home/pytition/www/mediaroot

or in your nginx config:

location /mediaroot {
alias /home/pytition/www/mediaroot;

16 Chapter 3. Configuration

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA_ROOT

Pytition, Release 2.0

See also:

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA _URL for more details from django doc-
umentation

SECRET_KEY = ''

Enter a random, unique and private secret key.
Pytition won’t start without it.
Never share it, don’t commit in git.

See https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECRET_KEY for more details from
Django documentation

To generate it, you can use the following command from your virtualenv with Django installed:
$ python3 -c "from django.core.management.utils import
get_random_secret_key as g; print(g())"

Example:

SECRET_KEY

'my secret key here'

STATIC_ROOT = None

Enter the file system path to the directory that will be used to serve your static files.
This must be an initially empty directory.

You must also configure a web server (apache, nginx or other) to serve

the content of this directory according to your STATIC_URL setting

which defaultis ' /static/"' in the example config.

For instance you can have this kind of setting:

STATIC_ROOT = '/home/pytition/www/static'
STATIC_URL '/static/"

And then in your apache config:

Alias /static /home/pytition/www/static

Or in your nginx config:

location /static {
alias /home/pytition/www/static;

}

See also:

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT for more details from Django
Documentation

STATIC_URL = '/static/'

enter the prefix that will be used for the url to refer to static files.

it must end with a forward slash ‘/°.

you must also configure a web server (apache, nginx or other) to serve

the content of the directory configured as STATIC_ROOT according to this setting
itdefaultsto ' /static/"' in the example config.

3.1.

Mandatory settings 17

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-MEDIA_URL
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT

Pytition, Release 2.0

for instance you can have this kind of setting:

STATIC_ROOT = '/home/pytition/www/static'
STATIC_URL = '/static/'

and then in your apache config:

alias /static /home/pytition/www/static

or in your nginx config:

location /static {
alias /home/pytition/www/static;

}

See also:

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-static_url for more details from django documen-
tation

Warning: The TINYMCE_JS_URL setting must be present in your config file if you modified the STATIC_URL
setting from its default value (/static/), either before of after the DO NOT EDIT AFTER THIS BANNER.
It is already present in the config_example.py file.

3.2 Not mandatory but important settings

You are highly encouraged to set the following variables in a production environment:

3.2.1 Pytition specific settings

USE_MAIIL QUEUE = False

Set it to True if you want email sending to retry upon failure.

Email transmition naturally have retries if the first SMTP server accepts it

If your SMTP server refuses to handle the email (anti-flood throttle?) then it
is up to you to retry, and this is what the mail queue does for you.

This is especially needed if you don’t own the first-hop SMTP server

and cannot configure it to always accept your emails regardless of the sending
frequency.

It is HIGHLY recommended to set this to True.

If you chose to use the mail queue, you must also either

* set a cron job (automatic task execution), or

* serve the Django app through uwsgi (recommended setup)

Warning: The first time you switch this setting from False to True, you must
run the DJANGO_SETTINGS_MODULE=pytition.settings.config python3 pytition/
manage.py migrate command again. Beware to run it while being in your virtualenv.

18 Chapter 3. Configuration

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-static_url

Pytition, Release 2.0

ALLOW_REGISTER = True

Whether you want to allow anyone to create an account and host petitions
on your Pytition instance.

Set it to False for a private instance.

Set it to True for a public instance.

DEFAULT_NOREPLY MAIL = 'noreply@domain.tld’'

Default address for ‘Reply to’ field in mail sent on account creation

3.2.2 Django settings

The following settings are important to set so that the email sent by Pytition are less likely to be considered as
spam/junk. You should configure a real SMTP email account and not just rely on “fake” email address from local
sendmail:

e DEFAULT_FROM_EMAIL
e SERVER_EMATL

e EMAIL_HOST

¢ EMATIL_HOST_PASSWORD
e EMAIL_HOST_USER

e EMAIL_PORT

e EMAIL_USE_TLS

e EMAIL_USE_SSL

* others when necessary

3.3 Other optional settings

Those are things you can configure to customize your Pytition instance:

SITE_NAME = 'Pytition'

The name of your Pytition instance.

FOOTER_TEMPLATE = None

Leave it set to None for no footer.
This should contain the relative path to your footer template.
That would be the location for any “legal mention” / “GDPR” / “TOS” link.

Example:

FOOTER_TEMPLATE = 'layouts/footer.html.example'

False

DISABLE_USER_PETITION

If set to True, users won’t be able to create petitions in their name, but only for an organization

RESTRICT_ORG_CREATION = False

3.3. Other optional settings 19

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DEFAULT_FROM_EMAIL
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SERVER_EMAIL
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_HOST
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_HOST_PASSWORD
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_HOST_USER
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_PORT
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_USE_TLS
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_USE_SSL

Pytition, Release 2.0

If set to True, regular users won’t be able to create new organizations.
Only superusers will be allowed to

20

Chapter 3. Configuration

CHAPTER
FOUR

UPDATE

4.1 Backup your files

Backup your media files, those are the pictures uploaded by your users in the petition contents and metadata.

The files to backup are in the mediaroot directory that you configured in your settings in the MEDIA_ROOT variable.

source path/to/pytition_venv/bin/activate

export DJANGO_SETTINGS_MODULE="pytition.settings.config" # path to your config
backup_dir=pytition_backup_$ (date +%Y%m%d_S$HSMSS)

mediaroot_dir=$ (python3 pytition/manage.py shell -c 'from django.conf import,
—settings; print (settings.MEDIA_ROOT) ')

$ rsync -av S$mediaroot_dir S$backup_dir

v »r A

4.2 Backup your Database

For this, I would advise to use the tools provided with your database server.
* SQLite: just copy your .db file and you’re done!
* PostgreSQL: use pg_dump to backup and psql to restore
e MariaDB / MySQL: use mysqldump to backup and mysql to restore

You can also try to backup using the django tool:

source path/to/pytition_venv/bin/activate

export DJANGO_SETTINGS_MODULE="pytition.settings.config" # path to your config
let's dump data

python3 pytition/manage.py dumpdata --all —--output data.json

now let's restore it

python3 pytition/manage.py loaddata data. json

w4 Ay

Warning: Always test your backup mechanism. If not tested, you can only suppose your backups are worthless.
You need to try to restore them on a dummy and empty instance, in order to make sure the backup is OK. Untested
backups do not work.

21

Pytition, Release 2.0

4.3 Update to a newer Pytition version

You can simply run the update command of the manage.py CLI:

$ source pytition_venv/bin/activate
$ python3 pytition/manage.py update

Or go through the following document and do it manually.

Download latest Pytition release tarball or update your git clone:

$ git stash && git pull

$ version=$ (curl -s https://api.github.com/repos/pytition/pytition/releases/latest |
—grep "tag_name" | cut -d : -f2,3 | tr -d \" | tr -d ,)

$ git checkout S$version

Then upgrade Pytition’s dependencies:

$ source pytition_venv/bin/activate
(pytition_venv) $ pip3 install —--upgrade -r requirements.txt

Then update your database scheme, update static files, compile new translation files:

export DJANGO_SETTINGS_MODULE="pytition.settings.config" # path to your config
python3 pytition/manage.py migrate

python3 pytition/manage.py collectstatic

python3 pytition/manage.py compilemessages

v W A

Then restart your web server, be it apache or nginx, and also your application server (uWSGI). Congratulations! You
should now be OK with a brand new Pytition release!

22 Chapter 4. Update

CHAPTER
FIVE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

23

Pytition, Release 2.0

24

Chapter 5. Indices and tables

PYTHON MODULE INDEX

P

pytition.settings.config_example, 15

25

Pytition, Release 2.0

26

Python Module Index

INDEX

ALLOW_REGISTER (in module pytition.settings.base), USE_MAIL_QUEUE (in module pytition.settings.base),
19 18

ALLOWED_HOSTS (in module pyti-
tion.settings.config_example), 15

DATABASES (in module pyti-

tion.settings.config_example), 15
DEFAULT_NOREPLY_MATL (in module pyti-
tion.settings.base), 19
DISABLE_USER_PETITION (in module pyti-
tion.settings.base), 19

F
FOOTER_TEMPLATE (in module pytition.settings.base),
19
M
MEDIA_ROOT (in module pyti-
tion.settings.config_example), 16
MEDIA_URL (in module pyti-
tion.settings.config_example), 16
module
pytition.settings.config_example, 15
P
pytition.settings.config example
module, 15
R

RESTRICT_ORG_CREATION (in module pyﬁ-
tion.settings.base), 19

S

SECRET_KEY (in module pyti-
tion.settings.config_example), 17
SITE_NAME (in module pytition.settings.base), 19

STATIC_ROOT (in module pyti-
tion.settings.config_example), 17
STATIC_URL (in module pyti-

tion.settings.config_example), 17

27

	Installation
	Manual installation (recommended for production)
	Installation via Docker (recommended for development)

	Multi-domain installation example
	Objectif
	Creating user accounts and directories
	Install system dependencies
	Get the source, configure and initialize Pytition
	Apache and uwsgi configuration
	Regular maintenance (update)

	Configuration
	Mandatory settings
	Not mandatory but important settings
	Other optional settings

	Update
	Backup your files
	Backup your Database
	Update to a newer Pytition version

	Indices and tables
	Python Module Index
	Index

