
Pytition
Release 2.0

Yann Sionneau

Apr 22, 2020

CONTENTS:

1 Installation 1
1.1 Manual installation (recommended for production) . 1
1.2 Installation via Docker (recommended for development) . 5

2 Configuration 7
2.1 Mandatory settings . 7
2.2 Not mandatory but important settings . 9
2.3 Other optional settings . 10

3 Indices and tables 11

Python Module Index 13

Index 15

i

ii

CHAPTER

ONE

INSTALLATION

1.1 Manual installation (recommended for production)

Install system dependencies:

1.1.1 On Debian derivatives

$ sudo apt update
$ sudo apt install git virtualenv libmariadbclient-dev python3-dev build-essential
→˓mariadb-server gettext

1.1.2 On Centos/Fedora derivatives

$ sudo yum install MariaDB-server galera-4 MariaDB-client MariaDB-shared MariaDB-
→˓backup MariaDB-common git python3 python3-virtualenv make gcc gettext

1.1.3 On Arch Linux

$ sudo pacman -S mariadb mariadb-libs python make gcc gettext

1.1.4 Get the source, configure and initialize Pytition

Get the latest release git tag:

$ version=$(curl -s https://api.github.com/repos/pytition/pytition/releases/latest |
→˓grep "tag_name" | cut -d : -f2,3 | tr -d \" | tr -d ,)

Create a directory to host your Pytition instance and it’s static files:

$ mkdir -p www/static

Create a Python3 virtualenv to install Pytitiont’s dependencies:

$ virtualenv -p python3 pytition_venv

Clone Pytition git repository and checkout latest release:

1

Pytition, Release 2.0

$ cd www
$ git clone https://github.com/pytition/pytition
$ cd pytition
$ git checkout $version

Enter your virtualenv and install Pytition’s dependencies:

$ source ../../pytition_venv/bin/activate
(pytition_venv) $ pip3 install -r requirements.txt

Create a MySQL database and user for Pytition:

$ password="ENTER_A_SECURE_PASSWORD_YOU_WILL_REMEMBER_HERE"
$ sudo mysql -h localhost -u root -Bse "CREATE USER pytition@localhost IDENTIFIED BY '
→˓${password}'; CREATE DATABASE pytition; GRANT USAGE ON *.* TO 'pytition'@localhost
→˓IDENTIFIED BY '${password}'; GRANT ALL privileges ON pytition.* TO
→˓pytition@localhost; FLUSH PRIVILEGES;"

Write your SQL credential file in my.cnf outside of www:

[client]
database = pytition
user = pytition
password = YOUR_PASSWORD_HERE
default-character-set = utf8

If your SQL server is MariaDB <= 10.2.1, you need to setup your SQL server to use table format compatible with
larger-than-767-bytes columns. From 10.2.2 onward, row format is already DYNAMIC by default. So, if you have
an old MariaDB, add the following lines after [server] in /etc/mysql/mariadb.conf.d/50-server.cnf (This path is for
Ubuntu 18.04):

innodb_large_prefix=true
innodb_file_format=barracuda
innodb_file_per_table=true
innodb_default_row_format=DYNAMIC

Create your Pytition instance config file by copying the example one:

$ cd www/pytition
$ cp pytition/pytition/settings/config_example.py pytition/pytition/settings/config.py

Now you can edit your config file in pytition/pytition/settings/config.py according to Configuration.

You must at least configure the settings described in the Mandatory settings section of the Configuration page.

Those are:

• SECRET_KEY
• STATIC_URL
• STATIC_ROOT
• DATABASES
• ALLOWED_HOSTS

Note: Do not forget to put a correct path to your my.cnf MySQL credential file in your config DATABASES setting.

Initialize Pytition project database. Pay attention to be in your virtualenv to enter the following commands:

2 Chapter 1. Installation

Pytition, Release 2.0

$ cd www/pytition/pytition
$ export DJANGO_SETTINGS_MODULE="pytition.settings.config"
$ python3 manage.py migrate
$ python3 manage.py collectstatic
$ python3 manage.py compilemessages
$ python3 manage.py createsuperuser

Note: You will be asked to enter a username, email and password for the administrator’s account.

Before trying to configure a web server you can try to see if your configuration is OK by running:

$ DEBUG=1 DJANGO_SETTINGS_MODULE=pytition.settings.config python3 ./manage.py
→˓runserver

You can then point your browser to http://yourdomain.tld:8000 and check that you can see Pytitiont’s home page and
log-in with your newly created admin account.

Warning: If you’ve set USE_MAIL_QUEUE to True and MAIL_EXTERNAL_CRON_SET to False, running
Pytition via manage.py runserver might not work well since you need to be run via uwsgi. Especially
emails might not be sent.

Note: If you switch USE_MAIL_QUEUE from False to True at some point, you might have to re-run python3
manage.py migrate to create the database structures needed for the mail queues.

1.1.5 Configure your web server

Nginx + uwsgi (recommended)

First install Nginx web server:

$ sudo apt install nginx

Here is an example of Nginx configuration that you can put in /etc/nginx/sites-available/pytition:

server {
server_name pytition.mydomain.tld;
keepalive_timeout 70;

location / {
include uwsgi_params;
uwsgi_pass unix:/var/run/uwsgi/app/pytition/socket;

}
location /static {
alias /home/pytition/www/static;

}

listen 443 ssl; # managed by Certbot
ssl_certificate /etc/letsencrypt/live/pytition.mydomain.tld/fullchain.pem; #

→˓managed by Certbot

(continues on next page)

1.1. Manual installation (recommended for production) 3

Pytition, Release 2.0

(continued from previous page)

ssl_certificate_key /etc/letsencrypt/live/pytition.mydomain.tld/privkey.pem; #
→˓managed by Certbot
include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot
ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot

}

server {
server_name pytition.mydomain.tld;
listen 80;
return 301 https://pytition.mydomain.tld$request_uri;

}

The previous example automatically redirects HTTP/80 to HTTPS/443 and uses Let’s Encrypt generated certificate.

Enable your new Nginx config:

$ sudo ln -s /etc/nginx/sites-available/pytition /etc/nginx/sites-enabled/pytition
$ sudo systemctl reload nginx

Install uwsgi dependency:

sudo apt install uwsgi uwsgi-plugin-python3 python3-uwsgidecorators

Put the UNIX user of your install in www-data group (for Debian like systems) if your user wasn’t www-data already.
For instance in our case we use the pytition unix username:

sudo usermod -a -G pytition www-data

Now let’s create our uwsgi configuration in /etc/uwsgi/apps-available/pytition.ini:

[uwsgi]
chdir = /home/pytition/www/pytition/pytition
module = pytition.wsgi
home = /home/pytition/pytition_venv
master = true
processes = 10
vacuum = true
socket = /var/run/uwsgi/app/pytition/socket
uid = ENTER_HERE_PYTITION_UNIX_USER
gid = www-data
chmod-socket = 664
plugins = python3
env = DJANGO_SETTINGS_MODULE=pytition.settings.config

Create a symlink to enable or uwsgi configuration:

sudo ln -s /etc/uwsgi/apps-available/pytition.ini /etc/uwsgi/apps-enabled/pytition.ini

Start uwsgi and nginx servers:

sudo systemctl start uwsgi
sudo systemctl start nginx

Your Pytition home page should be available over there: http://mydomain.tld

Now it’s time to Configure your Pytition instance the way you want!

4 Chapter 1. Installation

http://mydomain.tld

Pytition, Release 2.0

1.2 Installation via Docker (recommended for development)

Warning: Please, do NOT use this in production. You would have tons of security and performance issues.
You could lose your SECRET_KEY, you would run with Django’s DEBUG setting enabled, you would be serving
static files via Django basic webserver. You would be running with no HTTPS possibility at all. etc etc. Please :
don’t.

Clone latest development version of Pytition:

$ git clone https://github.com/pytition/pytition

Install docker and docker-compose:

$ sudo apt install docker.io docker-compose

Put your user in the docker group (needed for Ubuntu 18.04) and start docker daemon:

$ sudo usermod -a -G docker $USER
$ # log-in again as your user for group change to take effect
$ # or just type the following line
$ su -l $USER
$ sudo systemctl enable docker
$ sudo systemctl start docker

For the first run you need to create the database container and let it be ready:

$ docker-compose up --build db

Wait until it prints something like:

LOG: database system is ready to accept connections

Then hit ^C (ctrl+C) to shutdown the database container.

From now on, you can just type this to run Pytition in a container:

$ docker-compose up --build

Last command before being able to click on the “http://0.0.0.0:8000/” link that the “web” container prints to out on
the console. You need to run migrations, install static files, compile language files, create an admin account and lastly
populate your database with some dummy data. You can do all of this with the dev/initialize.sh script:

$ docker-compose exec web ./dev/initialize.sh

Aaaand that’s it! You can now just click on the “http://0.0.0.0:8000/” link!

Next time, just run $ docker-compose up --build

1.2. Installation via Docker (recommended for development) 5

http://0.0.0.0:8000/
http://0.0.0.0:8000/

Pytition, Release 2.0

6 Chapter 1. Installation

CHAPTER

TWO

CONFIGURATION

A configuration example is provided in pytition/settings/config_example.py. You should copy and edit it to configure
Pytition.

2.1 Mandatory settings

You must set the following variables:

ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '[::1]']

Enter the hostname(s) (aka VirtualHost(s)) Django should accept.
For instance mydomain.tld or petition.mydomain.tld

See also:

Details on how to set this up are available in Django documentation: ALLOWED_HOSTS

Example:

ALLOWED_HOSTS = ['www.mysuperpetition.org', 'mysuperpetition.org']

DATABASES = {}

Enter a database setting.
This will tell Django what database engine you want to use (supported ones are listed there:
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASE-ENGINE)
It will also give parameters like user/password credentials, server host/port etc.

See also:

Details on how to set this up are available in Django documentation: https://docs.djangoproject.com/en/2.2/ref/
settings/#std:setting-DATABASES

In the following example, credentials are in my.cnf file:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysql',
'OPTIONS': {

'read_default_file': '/home/pytition/my.cnf',
'init_command': "SET sql_mode='STRICT_TRANS_TABLES'",

},

(continues on next page)

7

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-ALLOWED_HOSTS
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASE-ENGINE
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASES
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASES

Pytition, Release 2.0

(continued from previous page)

}
}

SECRET_KEY = ''

Enter a random, unique and private secret key.
Pytition won’t start without it.
Never share it, don’t commit in git.
See https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECRET_KEY for more details from
Django documentation
To generate it, you can use the following command from your virtualenv with Django installed:
$ python3 -c "from django.core.management.utils import
get_random_secret_key as g; print(g())"

Example:

SECRET_KEY = 'my secret key here'

STATIC_ROOT = None

Enter the file system path to the directory that will be used to serve your static files.
This must be an initially empty directory.
You must also configure a web server (apache, nginx or other) to serve
the content of this directory according to your STATIC_URL setting
which default is '/static/' in the example config.

For instance you can have this kind of setting:

STATIC_ROOT = '/home/pytition/www/static'
STATIC_URL = '/static/'

And then in your apache config:

Alias /static /home/pytition/www/static

Or in your nginx config:

location /static {
alias /home/pytition/www/static;

}

See also:

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT for more details from Django
Documentation

STATIC_URL = '/static/'

Enter the prefix that will be used for the URL to refer to static files.
It must end with a forward slash ‘/’.
You must also configure a web server (apache, nginx or other) to serve
the content of the directory configured as STATIC_ROOT according to this setting
It defaults to '/static/' in the example config.

8 Chapter 2. Configuration

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT

Pytition, Release 2.0

For instance you can have this kind of setting:

STATIC_ROOT = '/home/pytition/www/static'
STATIC_URL = '/static/'

And then in your apache config:

Alias /static /home/pytition/www/static

Or in your nginx config:

location /static {
alias /home/pytition/www/static;

}

See also:

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_URL for more details from Django
Documentation

2.2 Not mandatory but important settings

You are highly encouraged to set the following variables in a production environment:

2.2.1 Pytition specific settings

USE_MAIL_QUEUE = False

Set it to True if you want email sending to retry upon failure.
Email transmition naturally have retries if the first SMTP server accepts it
If your SMTP server refuses to handle the email (anti-flood throttle?) then it
is up to you to retry, and this is what the mail queue does for you.
This is especially needed if you don’t own the first-hop SMTP server
and cannot configure it to always accept your emails regardless of the sending
frequency.
It is HIGHLY recommended to set this to True.
If you chose to use the mail queue, you must also either

• set a cron job (automatic task execution), or

• serve the Django app through uwsgi (recommended setup)

Warning: The first time you switch this setting from False to True, you must
run the DJANGO_SETTINGS_MODULE=pytition.settings.config python3 pytition/
manage.py migrate command again. Beware to run it while being in your virtualenv.

ALLOW_REGISTER = True

Whether you want to allow anyone to create an account and host petitions

2.2. Not mandatory but important settings 9

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_URL

Pytition, Release 2.0

on your Pytition instance.
Set it to False for a private instance.
Set it to True for a public instance.

2.2.2 Django settings

The following settings are important to set so that the email sent by Pytition are less likely to be considered as
spam/junk. You should configure a real SMTP email account and not just rely on “fake” email address from local
sendmail:

• DEFAULT_FROM_EMAIL
• SERVER_EMAIL
• EMAIL_HOST
• EMAIL_HOST_PASSWORD
• EMAIL_HOST_USER
• EMAIL_PORT
• EMAIL_USE_TLS
• EMAIL_USE_SSL
• others when necessary

2.3 Other optional settings

Those are things you can configure to customize your Pytition instance:

SITE_NAME = 'Pytition'

The name of your Pytition instance.

FOOTER_TEMPLATE = None

Leave it set to None for no footer.
This should contain the relative path to your footer template.
That would be the location for any “legal mention” / “GDPR” / “TOS” link.

Example:

FOOTER_TEMPLATE = 'layouts/footer.html.example'

10 Chapter 2. Configuration

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DEFAULT_FROM_EMAIL
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SERVER_EMAIL
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_HOST
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_HOST_PASSWORD
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_HOST_USER
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_PORT
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_USE_TLS
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-EMAIL_USE_SSL

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

11

Pytition, Release 2.0

12 Chapter 3. Indices and tables

PYTHON MODULE INDEX

p
pytition.settings.config_example, 7

13

Pytition, Release 2.0

14 Python Module Index

INDEX

A
ALLOW_REGISTER (in module pytition.settings.base), 9
ALLOWED_HOSTS (in module pyti-

tion.settings.config_example), 7

D
DATABASES (in module pyti-

tion.settings.config_example), 7

F
FOOTER_TEMPLATE (in module pytition.settings.base),

10

M
module

pytition.settings.config_example, 7

P
pytition.settings.config_example

module, 7

S
SECRET_KEY (in module pyti-

tion.settings.config_example), 8
SITE_NAME (in module pytition.settings.base), 10
STATIC_ROOT (in module pyti-

tion.settings.config_example), 8
STATIC_URL (in module pyti-

tion.settings.config_example), 8

U
USE_MAIL_QUEUE (in module pytition.settings.base), 9

15

	Installation
	Manual installation (recommended for production)
	Installation via Docker (recommended for development)

	Configuration
	Mandatory settings
	Not mandatory but important settings
	Other optional settings

	Indices and tables
	Python Module Index
	Index

